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A B S T R A C T   

Forecasting of hydrologic extremes across a range of timescales is critical for minimizing the socio-economic 
costs of these events. Regression-based prediction is commonly adopted even in operational forecasting sys-
tems, often necessitating the use of distributional transformations to improve model specifications. One of the 
issues in such predictions, however, is the marked differences that distinguish the frequency spectrum of the 
hydrologic response from the predictor variables used. This raises the question of whether there exists an optimal 
predictor variable transformation that can mimic the frequency spectrum embedded in the observed response 
variable series. The present paper discusses the need to transform predictor variables to improve hydrologic 
forecasts, and specifically focuses on the frequency domain of the variables involved. A number of alternatives 
using wavelet-based approaches are presented as a means of transforming the variance associated with different 
frequency bands in each predictor variable. The limitations and advantages of these transformations are sum-
marized and demonstrated using synthetic examples. A stepwise variance transformation framework is further 
proposed that facilitates transformations of the residual error from a given predictor variable conditioned on 
existing (or pre-identified) predictor variables. Results of the stepwise framework demonstrate that the response 
is better characterized using both synthetic case studies and when applied to forecasting the El Niño–Southern 
Oscillation (ENSO) over long lead times.   

1. Introduction 

Hydrologic time series are often positively skewed with a larger 
proportion of low values and very few high to extreme values. Using a 
predictive model that adopts as predictors variables that are more 
evenly distributed, creates difficulties in modelling especially when 
linear predictive alternatives are used. It is for this reason that we adopt 
distributional transformations, as is the case when relating total dis-
solved solids (TDS) concentrations and streamflow, where the discharge 
will often be logarithmically transformed (Mosteller and Tukey, 1977). 
Such a transformation is often sufficient to ensure a distributional cor-
respondence between the response and associated predictors, but is 
inadequate if these variables exist as a time series and there is a 
mismatch in their respective frequency spectrums. Consider, for 
instance, the teleconnection between the El Niño–Southern Oscillation 
(ENSO) and rainfall, the association of which has been studied exten-
sively in the literature (D’Arrigo et al., 2005; Pui et al., 2012; Torrence 
and Compo, 1998; Westra and Sharma, 2010). Here, a simple linear 
model is not sufficient to relate the two because the response (rainfall) 

exhibits a markedly different spectrum to the predictors. As such, for 
many complex natural systems, formulating a simple predictive model 
becomes challenging especially when there exists no physical rationale 
to adopt an explicit or implicit transformation of the variables that 
define the system. 

There are three key reasons we use variable transformations as a 
means of improving model specification:  

1) to simplify the patterns in the variable (e.g., more symmetric or 
constant) by removing known modes of variability including random 
noise,  

2) to allow relationships between variables to be expressed using 
simpler (often linear) models, and  

3) to force the spectrum of the predictor variables to exhibit a greater 
consistency with that of the response being modelled (Helsel and 
Hirsch, 2002; Hyndman and Athanasopoulos, 2014; Jiang, Sharma 
et al., 2020; McInerney et al., 2017; Wu et al., 2019). 

Table 1 lists a variety of mathematical transformations that have 
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been adopted for hydrological applications in the past. These include 
transformations that modify the probability distribution, such as loga-
rithmic, reciprocal, and Box-Cox (Box and Cox, 1964), mainly applied to 
the response (y). Note that log and reciprocal transformations are 

variants of the Box-Cox transformation when λ1 = 0 and λ1 = − 1, 
respectively. The log-sinh transformation has also been proposed to 
address heteroskedasticity often resulting from a Box-Cox Trans-
formation (Wang et al., 2012). Table 1 also includes a variance 

Table 1 
Summary of mathematical transformations used in hydro-climatology.  

Data transformation Equation Notation 

Log transformation y′

= log(y + λ2) log 

Reciprocal (inverse) transformation y′

=
1

y + λ2    

recip 

Box-Cox transformation (Box and Cox, 1964)    
y′

=

⎧
⎪⎨

⎪⎩

(y + λ2)
λ1 − 1

λ1
, ifλ1 ∕= 0;

log(y + λ2), ifλ1 = 0.

bc 

Log-sinh transformation (Wang et al., 2012) 
y′

=
log(sinh(λ1y + λ2))

λ1  

log-sinh 

Variance transformation (Jiang, Sharma, et al., 2020) X′

= R̂Xα  VT 

Phase randomization (Chavez and Cazelles, 2019) x′

= Wx′ (t, f)− 1 Wx′ (t, f) = |(Wx(t, f))|exp(iφnoise(t, f)) PR 

Note: y is the response and y’ is the transformed response; X is the predictor and X’ is the transformed predictor; x is the original variable and x’ is the simulated 
variable. λ1 and λ2 are power parameters; R̂X is the standardized wavelet reconstruction matrix of X and α is the transformed standard deviation matrix; Wx(t, f) is the 
wavelet transform of the target variable and Wx′ (t, f)− 1 is the inverse wavelet transform of Wx′ (t,f), which is the transformed time–frequency representation of x with 
the randomized phase from Gaussian white noise φnoise(t, f). 

Fig. 1. Example of log transformation and variance transformation using residual plot and spectrum analysis: (a) Observed and fitted response using original data, 
log-transformed response, and variance-transformed predictors in the time domain (b) Scatter plot of fitted response against the associated residuals using three 
different approaches; (c) Spectral density plot of observed and fitted response using three different approaches. 
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transformation (Jiang, Sharma, et al., 2020) which was developed to 
refine the spectral representation of predictor variables, and phase 
randomization as a related means of surrogate data generation (Brunner 
et al., 2019; Chavez and Cazelles, 2019; Schreiber and Schmitz, 2000), 
both defined in the frequency domain which forms the focus of our 
study. In all cases, transformations aim to assist in the specification of a 
more accurate and stable predictive model. 

Fig. 1 illustrates two different transformations for a nonlinear system 
where predictors and the response have markedly different spectral 
properties. The nonlinear dataset is characterized by the Rössler system 
with a k-nearest neighbor (knn) regression model (more details are 
provided in Section 3.4). The log transformation in the temporal domain 
and a recently developed variance transformation in the frequency 
domain are demonstrated. It is observed that the transformation in the 
spectrum allows a balanced representation of both regression di-
agnostics and spectral attributes. Not only residuals are close to 
normality (although heteroscedasticity still exists), but fitted values are 
more similar to observations in both the spectral and temporal domains. 
It is worth noting that the residuals of log transformation are in their 
original space and the synthetic experiment is constructed to illustrate 
the merit of the spectral transformation when there is a significant 
mismatch in the spectrum of the predictors and the response. 

In this study, we focus on the variance transformation approach in 
the frequency domain to further explore its applicability for hydrologic 
forecasting. As discussed in Jiang, Sharma, et al. (2020), one of the most 
common ways to characterize the spectrum of a time series is the 
discrete wavelet transform (DWT). DWT can decompose the original 
signal into sub-time series representing information at a range of fre-
quencies, which captures periodicity, short- and long-term dependence, 
and non-stationarity that exist in the original signal. If these decom-
posed sub-time series are used in a data-driven model, there can be 
significant improvements in prediction accuracy (Nourani et al., 2014; 
Sang, 2013). However, the DWT decomposed components at any point 
in time are calculated using future information as well as past infor-
mation (Du et al., 2017; Quilty and Adamowski, 2018). This means that 
DWT cannot be used in forecasting applications, where future infor-
mation on the predictors is not available. In contrast to DWT, the 
maximal overlap DWT (MODWT) decomposes the time series indepen-
dent of future information and a secondary benefit is that it does not 
require time series to be of dyadic length (Percival and Walden, 2000). 
Another alternative to these approaches, Algorithme à trous (AT) also 
has no dependence on future information, and one of its characteristics 
is that the decomposed sub-time series is redundant but captures the 
main feature and variability of the original time series (Dutilleux, 1990; 
Fowler, 2005). More details on the difference and advantages of each 
wavelet transform mentioned above are provided in Section 2. 

There are two common means of using decomposed sub-time series 
from any wavelet transform in system modeling and forecasting. The 
direct approach (Nguyen and Nabney, 2010), uses the decomposed sub- 
times series to predict the target response (e.g., Kişi, 2011; Rashid et al., 
2018). The multi-component approach first uses decomposed sub-time 
series to forecast decomposed components of the target response at 
the equivalent scales and then aggregates these sub-time series pre-
dictions (e.g., Rathinasamy et al., 2014; Shafaei and Kisi, 2016). In 
addition to these approaches, a new technique, namely variance trans-
formation, was developed to improve the predictability of a response by 
transforming the weights assigned to each of the decomposed frequency 
components in the predictor and thus forming a new predictor variable 
that improves the prediction of the response (Jiang, Sharma, et al., 
2020). The key assumption of this method is that if the predictor and the 
corresponding response have similar spectral properties, the predictive 
model using the transformed predictor will exhibit better accuracy. This 
method was initially developed based on the DWT and was then 
extended to include the MODWT so that it could be used in forecasting 
without requiring future information on the predictor (Jiang, Rashid 
et al., 2020). In this study, three further contributions to the method are 

proposed. Firstly, the theoretical formulation of variance transformation 
using AT is introduced and tested on a synthetic dynamical system 
model. Secondly, the original method transformed each predictor indi-
vidually based on its relationship with the response. Here, a stepwise 
variance transformation approach is proposed which transforms the 
predictor variables according to the residual of the response conditional 
on pre-existing predictors. It is hypothesized that the stepwise trans-
formation further improve the prediction accuracy even when the pre-
dictor variables and the associated response have matching spectral 
attributes. Finally, we comprehensively investigate whether the newly 
developed stepwise variance transformation approach can improve long 
lead forecasting of ENSO. 

The remainder of the paper is organized as follows. Section 2 reviews 
wavelet transforms of DWT, MODWT, and AT to provide a better un-
derstanding of their implications on the variance transformation tech-
nique. In Section 3, the variance transformation technique derived from 
DWT and MODWT is reviewed and extended to include AT. Section 4 
introduces the stepwise variance transformation and compares it against 
the direct variance transformation method. The capability of the step-
wise variance transformation framework in a real-world forecasting 
example is demonstrated in Section 5. Summary and conclusions are 
presented in Section 6. 

2. Wavelet transforms 

This section provides some basic concepts and introduces notations 
for readers with limited knowledge about wavelet transforms. Wavelet 
transforms are used to characterize the spectrum of time series. The 
variance transformation method of Jiang, Sharma, et al. (2020) uses 
wavelet transforms, and modifies predictor variable time series to better 
match a response variable in the frequency domain. This is unlike the 
Box-Cox and related transformations in Table 1 which attempt to modify 
the distributional representation of the variable, with smaller changes to 
the spectrum. 

In this section, we review and summarize the characteristics of DWT, 
MODWT, and AT, respectively to motivate extending the variance 
transformation method to AT. DWT can be implemented in two ways – 
either through additive decomposition (also known as multiresolution 
analysis) or via variance (or energy) decomposition. The variance 
transformation method is based on the multiresolution analysis (MRA) 
and thus when we use DWT hereafter in the paper, it refers to DWT- 
MRA. Given a discrete data sample X = [x0, x1, ..., xn− 1]

T, the DWT of 
the time series by decomposing the signal into wavelet and scaling co-
efficients is given by Percival and Walden (2000): 

W = wX (1)  

where W is a vector of DWT coefficients (n× 1), and w is the n × n 
orthonormal transform matrix. The reconstruction of the original data 
set can be achieved by the equation (Aussem et al., 1998; Percival and 
Walden, 2000): 

X = wT W =
∑J

j=1
dj + aJ (2)  

where W can be partitioned as W = [D1, …, DJ, AJ], including detail 
coefficients (Dj) and approximation coefficients (AJ); n is the sample size 
while J is the maximum decomposition level; dj is the reconstructed 
details while aJ is the reconstructed approximations. Thus, the recon-
struction matrix is given by R = [d1,…, dJ, aJ] with a dimension of n×
(J + 1), and the associated standard deviation matrix is given by I =

[σd1 ,…, σdJ , σaJ ]
T . This leads to additive decomposition which is known 

as multiresolution analysis. The MODWT is a variant of the DWT, and 
MODWT decomposes the original time series X into a n × (J+1) matrix 
of wavelet and scaling coefficients W̃ = [D̃1,…, D̃J , ÃJ], with the asso-
ciated standard deviation matrix being ̃I = [σ

D̃1
,…, σ

D̃J
, σ

ÃJ
]
T . Similarly, 
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AT can decompose the original time series into a n × (J+1) matrix of 
W̃

a
= [D̃

a
1,…, D̃

a
J , Ã

a
J], and the associated standard deviation matrix is 

given by ̃I
a
= [σ

D̃
a

1
,…, σ

D̃
a

J
, σ

Ã
a

J
]
T. It is noted that dyadic down-sampling is 

avoided in the MODWT and AT resulting in wavelet and scaling co-
efficients that have the same length as the original time series so that 
their coefficients matrix (W̃) have a different dimension from W, the 
coefficients matrix of DWT (Walden, 2001). 

The mathematical formulations of all three types of wavelet trans-
forms are presented by Quilty and Adamowski (2018) and Percival and 
Walden (2000), and readers are referred to their work for more detailed 
information. Here, we provide a general discussion on all three methods 
including their strengths and drawbacks which are summarized in 
Table 2. The main benefit of using DWT-MRA is that it ensures both 
additive decomposition and variance decomposition. These two features 
are required to find the theoretically optimal variance transformation 
(Jiang, Sharma, et al., 2020) discussed in the next section. However, the 
major challenge in using DWT-MRA for predictions is that it depends on 

future data to decompose the original time series into the frequency 
domain. MODWT and AT decompositions are both independent of future 
information and are therefore appropriate for forecasting applications. 
The second drawback of DWT-MRA is that it requires a dyadic sample 
size, whilst MODWT and AT have no restrictions in terms of sample size. 
Although MODWT and AT have advantages over DWT-MRA on these 
two points, they only partially meet the requirements for an optimal 
variance transformation. MODWT only preserves variance in the 
decomposition while AT only permits additive decomposition. However, 
the logic of variance transformation can still be applied using either 
method, but the resulting transformed variable could be dramatically 
different from the original time series (e.g., the variance of the time 
series). Theoretically, MODWT is preferable to AT since it ensures 
variance decomposition so that it aligns with the key idea of variance 
transformation (i.e., redistributing variance across the frequency 
domain) while AT gives more redundant information of the original time 
series. However, the redundancy of information in the decomposition 
has many advantages in real applications, and an example demon-
strating these has been included in Section 3.4. 

As discussed by Quilty and Adamowski (2018), there are a number of 
wavelet filters that have associated benefits and drawbacks in repre-
senting the variable time series in the frequency domain. When a Haar 
wavelet filter is used, MODWT and AT are equivalent, resulting in the 
same wavelet and scaling coefficients. More importantly, with the Haar 
wavelet, MODWT (and thus also AT) preserve variance and additive 
decomposition. As a result, the proposed variance transformation tech-
nique can be applied to MODWT and AT. However, there is a risk that 
the Haar filter may not properly characterize the spectrum of variables 
of interest and thus we also consider in Section 3 the implications of 
different choices of the filter. However, the advantage of MODWT or AT 

Table 2 
Summary of properties for the three types of wavelet transforms.  

Wavelet 
Method 

Additive 
decomposition 

Variance 
decomposition 

No dependence 
on future data 

Dyadic 
sample 
size 

DWT- 
MRA 

✓ ✓  ✓ 

MODWT  ✓ ✓  
AT ✓  ✓  

Note: When the Haar wavelet filter is used, MODWT and AT are equivalent, and 
both preserve additive and variance decomposition. 

Fig. 2. Illustration of three types of wavelet transforms using db8: (a) DWT-MRA; (b) MODWT; (c) AT.  
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in being independent of future information makes their use very 
attractive. Consequently, when we adopt the Haar wavelet filter for 
MODWT and AT, hereafter it will be referred to as MODWT/AT due to 
their equivalence in the remainder of our presentation. 

Fig. 2 illustrates how the decomposition varies for the three wavelet 
transforms (i.e., DWT, MODWT, and AT) using the target response from 
the forecasting example presented in Section 5 (i.e., time series of ENSO 
index, Niño3.4). The variance in the original time series (red line) is 
concentrated at low frequencies (high to low frequency shown from 
upper to lower panels). A long wavelet filter (Daubechies 8, for short db8 
or d16) is used to demonstrate the difference between the de-
compositions in the frequency domain. For reference, the equivalence of 
MODWT and AT when using the Haar wavelet filter is given in Figure S 1 
of the Supporting Information. Note that the time series is padded with 
zeros to bring the sample size to the next higher power of two (i.e., 
dyadic sample size) which is necessary for DWT in this study. 

3. Variance transformation technique 

The DWT-based variance transformation technique was introduced 
by Jiang, Sharma, et al. (2020), and is briefly reviewed in Section 3.1. 
The solution to DWT requiring future information was addressed by 
Jiang, Rashid, et al. (2020) using MODWT, and here we introduce the 
mathematical basis of the AT-based approach. A synthetic dataset 
generated from the Rössler system is used to compare the three alter-
natives of variance transformation. Finally, a short summary of all three 
wavelet-based variance transformation methods is given. 

3.1. Variance transformation using DWT 

As described previously, DWT decomposes the original time series X 
into a vector of wavelet and scaling coefficients W = [D1,…,DJ,AJ]

with a dimension of n× 1. Reconstructed details and approximations 
using wavelet and scaling coefficients are given by R = [d1,…, dJ, aJ]

with a dimension of n× (J + 1), and the associated standard deviation 
matrix is given by I = [σd1 ,…, σdJ , σaJ ]

T. The resultant R is also called 
DWT-MRA. In the form of matrix multiplication, the original time series 
X can be expressed as X = R̂I, where R̂ is the standardized recon-
struction matrix. Our objective is to find a transformed predictor vari-
able X’ using the rotated variance structure α following the direction of 
covariance vector C between the variable set (Y, R̂). Y is the associated 
response of X. This can be written as (Jiang, Sharma, et al., 2020): 

X′

= R̂α
α = σX Ĉ

(3)  

C =
1

n − 1
YT R̂ =

[

S
Y d̂1

, ..., S
Y d̂ J

, SY âJ

]

(4)  

where Ĉ is the normalized covariance vector of C. Basically, the trans-
formed predictor X’ is obtained by redistributing the variance in its 
spectrum whilst ensuring the resulting variance of transformed time 
series X’ is the same as the original predictor X. In the end, a theoretical 
optimal prediction accuracy, as measured by root mean square error 
(RMSE), can be derived as (Jiang, Sharma, et al., 2020): 

RMSEmin =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

n
(σ2

Y − ‖C‖2
)

√

, (5)  

where σY denotes the standard deviation of the response Y, and ‖⋅‖
denotes the norm of a vector in Euclidean space. As can be seen in 
Equation (5), both the positive and negative signs of covariance can 
result in the same optimal prediction accuracy. However, the sign of 
covariance affects how the transformed predictor variables behave, and 
we found that the transformed predictor variables sometimes show 
trends physically inconsistent with observations if only the positive sign 

of covariance is used. The correct sign for the covariance is that it should 
match the sign of its associated correlation coefficient. An auto-selection 
process to achieve this is therefore recommended and has been applied 
to all variance transformation alternatives discussed in this study. The 
implementation of the auto-selection process ensures the trend of the 
transformed predictor is consistent with observations. 

3.2. Variance transformation using MODWT 

As discussed in Section 2, MODWT, a modified version of DWT, has 
no limitation on the sample size and has no future data dependence 
(Nason and Von Sachs, 1999). MODWT decomposes the original time 
series X into a n × (J+1) matrix of wavelet and scaling coefficients 
W̃ = [D̃1, …, D̃J, ÃJ], and the associated standard deviation matrix is 
given by ̃I = [σ

D̃1
,…, σ

D̃J
, σ

ÃJ
]
T . MODWT always preserves the variance 

decomposition, which provides a way to investigate and transform the 
variance structure of the coefficient matrix, W̃. It is mentioned that the 
coefficients matrix W decomposed from DWT has a dimension of n × 1 
while the coefficients matrix W̃ from MODWT has a dimension of n×
(J + 1). This is another reason it can be used for the variance trans-
formation directly. Consequently, using the covariance C between the 

variable set (Y, ̂̃W) the variance transformed X’ can be obtained by 
(Jiang, Rashid, et al., 2020): 

X′

=
̂̃Wα

α = σX Ĉ
(6)  

where ̂̃W is the standardized coefficients matrix W̃. Note that although 
the variance decomposition is ensured with the MODWT, it cannot lead 
to the same variance as present in the original time series since the 
decomposed components are not additive after the transformation even 
when the Haar wavelet filter is used. 

3.3. Variance transformation using AT 

Algorithme à trous, introduced by Holschneider et al. (1990) and 
Shensa (1992), is a wavelet transform algorithm designed to overcome 
the problems that occur in DWT associated with data reduction due to 
down-sampling and future data dependence. AT is a redundant trans-
form because the decomposed time series is computed by repeated 
filtering with a maximal sampling rate at all dyadic scales, and the 
inherent redundancy of this transform has many advantages in appli-
cations. So, taking a J level decompositions of an original time series of 
size n for example, AT can decompose the original time series of X into a 
n × (J+1) matrix of W̃

a
= [D̃

a
1,…, D̃

a
J, Ã

a
J ], and the associated standard 

deviation matrix is given by Ĩ
a
= [σ

D̃
a

1
,…, σ

D̃
a

J
, σ

Ã
a

J
]
T. Therefore, the 

proposed variance transformation using AT can be expressed as: 

X′

=
̂̃W

a
α

α = σX Ĉ
(7)  

where Ĉ is the normalized covariance vector of C between the variable 

set (Y, ̂̃W
a
). As mentioned in Section 2, AT ensures additive decompo-

sition but violates the variance decomposition. This means that the 
variance transformation in Equation (7) could lead to a transformed 
variable with the substantially increased variance due to the redundant 
information included in the decomposition. The implications for this 
increased variance are considered in the case study presented next. 
Alternatively, the transformed variable could be rescaled to match the 
variance of the original time series where appropriate for any particular 
predictive models. 
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3.4. Application to synthetic examples 

Synthetic datasets generated from statistical models with known 
attributes give opportunities to evaluate the effectiveness of a method or 
algorithm. In this study, the Rössler system, a dynamical system that 
exhibits chaotic dynamics proposed by Rössler (1976), was used to 
investigate the proposed methods. The Rössler system is defined by the 
following three differential equations: 

dx
dt

= − y − z,

dy
dt

= x + ay,

dz
dt

= b + z(x − c).

(8) 

The chaotic system includes three constant parameters, namely a, b 
and c. The values of a = 0.2, b = 0.2, and c = 5.7 are commonly used 
(Harrington and Van Gorder, 2017; Strogatz, 2000), and it is initialized 
from a given condition of (− 2, − 10, 0.2). The Rössler system generates a 
dependent variable set (xt, yt, zt), where xt and yt are used as predictor 
variables while zt is considered as the corresponding response. An 
illustration of the Rössler system in phase space and time domain is 
presented in Fig. 3. 

In the experiment, the dynamical system is further complicated by 
adding Gaussian white noise ε to each generated time series, where 
ε ∼ N

(
0,0.12). All synthetic time series in this section have the same 

sample size of n = 100,000, and the first half of the data is used as the 
calibration dataset while the second half is used as the validation 
dataset. Variance transformation is carried out after the data partition, 
and the derived covariance from the calibration set is then transferred to 
the validation set along with the fitted predictive model. The knn 
regression from Beygelzimer et al. (2006) is used here as the predictive 
model. 

Using the generated data seen above, illustrations of how three 
different types of wavelet-based transformations perform using two 
different wavelet filters (Haar and db8) are given in Figs. 4 and 5, 
respectively. The increased variance of transformed predictors is 
observed for the AT-based approach using both Haar and db8 wavelet 
filter, but it will not affect the final prediction performance using 
regression-based models as is the case presented here (see the following 
results). Although the transformed predictors from the MODWT-based 

approach with db8 are able to match the variance of the original pre-
dictor, it fails to characterize the predictor variables properly. In terms 
of the DWT-based approach, the transformed predictor of y using either 
Haar or db8 wavelet presents an inconsistent pattern with the original 
variable. Last, it is clear that wavelet transforms investigated here have 
minor issues of characterizing predictors at the beginning of the time 
series. This is the curse of wavelet transforms resulting from boundary 
related issues, investigated and addressed in Jiang, Rashid, et al. (2020). 

A radar chart showing three metrics (including RMSE, standard de-
viation, and correlation) for all three types of wavelet-based models 
using original and transformed predictor variables is presented in Fig. 6. 
Note that since the Haar wavelet filter is adopted, MODWT and AT are 
equivalent to each other, and the observation is included here mainly for 
indicating what the optimal value for the standard deviation. In terms of 
calibration, models using transformed predictor variables perform 
similarly for all three alternatives, and they are better than models using 
original predictor variables. For validation, all wavelet-based models 
outperform the reference model in both correlation and RMSE. It is 
noted that there is an exceptionally good correlation in the validation 
results for the MODWT/AT-based approach, which is most likely due to 
the Rössler system characteristics (i.e., the modeled response (zt) has a 
large number of low values) as well as the trade-off among the three 
metrics. This trade-off has been well described and discussed through 
MSE decomposition (Gupta et al., 2009). Different wavelet transforms 
characterize the spectrum of variables differently resulting in different 
transformed predict variables (seen in Fig. 4), and the MODWT/AT- 
based approach works better than DWT in this dynamic system. 

What we show above is a case under ideal conditions with suffi-
ciently long data samples. However, this rarely happens in reality. 
Furthermore, there are many other practical issues related to wavelet 
transforms, such as the selection of wavelet filters and the decomposi-
tion level. In Fig. 7, we have assessed the sensitivity of the approach to 
the choice of wavelet family by using the db8 wavelet filter. As shown in 
Fig. 5, when a longer wavelet filter is used, DWT and MODWT are not 
able to characterize the spectrum of the predictor well and show com-
parable performance in all three metrics. However, the AT-based model 
has higher correlation and lower RMSE than the other two methods 
since its redundant decomposition allows the preservation of high- 
frequency information even when a longer wavelet filter is adopted. 
Therefore, the introduction of AT-based variance transformation is 
valuable when wider wavelet filters are required and are more likely to 

Fig. 3. Example of the Rössler system. (a) Phases space plot of the Rössler system corresponding to a = 0.2, b = 0.2, and c = 5.7; (b) Time domain plot of the 
dependent variable set (xt, yt, zt). 

Z. Jiang et al.                                                                                                                                                                                                                                    



Journal of Hydrology 603 (2021) 126816

7

characterize the process of interest well, for example, an instantaneous 
process with polynomials of high order coefficients, such as a constant, 
linear, quadratic components, etc (Maheswaran and Khosa, 2012). 

In closing, the above results investigate the model performance 
across different wavelet-based variance transformation approaches. 
Their limitations and advantages over each other have been discussed in 
detail. A comparison against the traditional wavelet forecasting ap-
proaches (i.e., direct and multi-component approaches, which use 
decomposed frequency components as predictors) is included in Text S 1 
of the Supporting Information. 

4. Variance transformation framework 

In this section, we first present the variance transformation tech-
nique as a generalized model specification framework that uses a step-
wise approach to implement the transformation. Secondly, we compare 
and highlight the difference between the stepwise transformation and 
direct transformation using a synthetic example generated from an 
autoregressive model with multiple predictor variables. 

4.1. Stepwise variance transformation 

The variance transformation technique is designed for regression 
problems where the aim is to better match the spectrum of the predictors 
with the response variable. Thus, the transformation of predictor vari-
ables can be based on the original response with each predictor variable 
individually. An alternative approach in the case of multiple predictors 
is to consider the transformation of a particular predictor based on the 
residual information in the response given existing predictor variables 
that have already been selected for use in the model. A stepwise selec-
tion logic calculating partial informational correlation (PIC) based on 
mutual information in information theory was introduced by Sharma 
(2000) and Sharma and Mehrotra (2014), and it is now combined with 
the variance transformation, resulting in stepwise variance trans-
formation. An overall flowchart of the proposed framework is provided 
in Fig. 8. This framework has been implemented in an R library named 
WAvelet System Prediction (WASP), and more details can be found in 
Jiang, Rashid, et al. (2020). 

The first step is to transform each predictor variable corresponding to 

Fig. 4. Example of original (black line) and transformed (blue line) predictors using Haar: (a) DWT-MRA (b) MODWT/AT. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Example of original (black line) and transformed (blue line) predictors using db8: (a) DWT-MRA (b) MODWT (c) AT. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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the response individually. Second, the first significant predictor (i.e., the 
first-order predictor) is identified, which is the predictor with the 
strongest dependence between the transformed predictor and response 
using PIC. Next, residual information in the response and predictors is 
calculated, conditioned on the pre-identified predictors, and then 
higher-order predictor variables are obtained by transforming their re-
siduals in predictors with respect to the residual in the response. This 
process is repeated until a pre-specified number of predictors have been 
selected or until the remaining residuals of predictors have no further 
dependence with the response residual. Although there are many op-
tions to calculate the residual in the response of interest, residuals here 
are computed by using knn leave-one-out cross-validation. To help 
illustrate this process, the stepwise variance transformation process can 
be formulated as Equation (9) as follows: 

X′

= g(X|Z,Y|Z) (9)  

where g(⋅) denotes the variance transformation operation represented in 
the previous section and Z represents the pre-existing predictor(s). It is 
clear that when Z is empty, the transformed predictor variable is the 
first-order predictor, while when Z is not empty, it is a higher-order 
predictor variable. The above processes summarize the stepwise vari-
ance transformation. 

Table 3 shows an illustration of both variance transformation (VT) 
and stepwise variance transformation (SVT) approaches. We use three 
predictor variables here, but there is no mathematical limit to the 
number of predictor variables. Clearly, the proposed two approaches 
share the same first-order predictor but otherwise, they are different. 
Although the same order of X1, X2, and X3 is shown in the table, the 
actual order that the predictors are selected is likely to be different for 
the higher-order predictors. This is because the SVT method transforms 
the residual information conditioned on the previously identified pre-
dictors such that the transformed predictors are different from the VT 
method. An example of the first- and second-order predictors using the 
real-world example can be found in Section 5. 

4.2. Application to synthetic examples 

The autoregressive model of order nine (AR9) is adopted here to 
assess the performance of VT and SVT, respectively. The equation of the 
AR9 model is given by Sharma (2000): 

xt = 0.3xt− 1 − 0.6xt− 4 − 0.5xt− 9 + εt (10)  

where ε is random Gaussian noise with zero mean and unit standard 
deviation. For each dataset, xt was arbitrarily initialized and a total of N 
+ 500 data points were generated, and the first 500 points were dis-
carded to reduce the effects of arbitrary initializations. Nine candidate 
inputs, xt− 1, xt− 2, …, and xt− 9, were generated with only three of these, 
xt− 1, xt− 4, and xt− 9, needed in the AR9 model. A total number N of 1024 
samples are generated, and the first half of the data is used for calibra-
tion while the second half is used for validation. Similarly, trans-
formation is applied after the data partition and the knn model is used as 
the predictive model. The dyadic sample size is used to remove any 
boundary effects. DWT was used as the basis of wavelet transform for 
both VT and SVT, with the Haar wavelet filter adopted. Under this 
controlled environment, we can isolate the impacts of the stepwise 
transformation logic. 

Three models were run, one with original predictors (referred to as 
standard approach, Std), one with VT predictors, and finally a model 
with the SVT predictors. Table 4 presents the results of predictor se-
lection in terms of the number of times a predictor is identified out of 
100 realizations and the total number of predictors identified using 
original and transformed predictors. The true predictors of AR9, xt− 1, 
xt− 4, and xt− 9, are identified in 100% of the realizations using all models. 
However, many additional predictor variables are selected using the VT 
approach and a handful of additional predictor variables are identified 
by the Std approach, while SVT performs between the two. Because both 
VT and SVT force predictors to be more similar to the associated 
response, this leads to higher dependence between the predictors and 
response, and thus more significant predictors are identified. However, 
the SVT approach tends to select fewer predictors than VT as predictor 
variables are transformed based on the residual information in the 

Fig. 6. Comparison of model performance using original and transformed predictors with the Haar wavelet filter: (a) DWT-based model; (b) MODWT/AT- 
based model. 
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response, meaning that fewer predictors are needed to characterize the 
response. Table S 1 presents the general agreement that exists between 
the PIC scores between calibration and validation (averaged across 
predictors and synthetic realizations), indicating the appropriate good-
ness of fit achieved in the process of defining the prediction model. 

In addition, SVT has the best performance as measured by RMSE 
among the three models in both calibration and validation (Fig. 9). 
Based on the one-sided, two-sample Kolmogorov–Smirnov test, the 
RMSE values from the SVT model are significantly smaller than that of 
Std and VT, with p-values of 0.0004 and 0.001, respectively. It is worth 
noting that in terms of prediction accuracy there are only incremental 
improvements over Std using the proposed VT technique. This is mainly 
due to the nature of the AR9 system, where the spectral properties of the 
predictor and response are quite similar since the predictors in the 
system are lagged values of the response (Jiang, Sharma, et al., 2020). 
The SVT approach not only shows further improved prediction accuracy 
but also has advantages over the VT approach in terms of true predictor 
identification. These advantages of SVT will be further demonstrated 
using a real-world example in the next section. 

5. Application to forecasting ENSO 

Long-lead ENSO forecasting over the Niño3.4 region is used as a real- 
world example in this study. We adopted wind stress and temperature 
variables as regression predictors as they have been used in a range of 

ENSO forecasting works (Dijkstra et al., 2019; Petrova et al., 2019). We 
have adopted the same regression predictors over three different regions 
in the equatorial area as given by Petrova et al. (2019), and details of 
these variables are given in Table S 2. The monthly time series of these 
variables are the averaged values over the three regions. The sea surface 
temperature datasets used for the predictors are NOAA ERSST-V4. The 
zonal wind stress is derived from ICOADS data provided by the NOAA/ 
OAR/ESRL PSL, Boulder, Colorado, USA. The subsurface temperature 
dataset used for the subsurface ocean predictors is the Subsurface 
Temperature and Salinity Analyses dataset by Ishii et al. (2005), and 
subsurface temperature variables are extracted at depths of 50, 100, 
150, 200, 250, 300, 400, and 500 m. The monthly anomalies of Niño3.4 
are derived from monthly sea surface temperature values of Hadley 
Centre Global Ice and Sea Surface Temperature (HadISST) datasets 
(Rayner et al., 2003). In total, the entire dataset includes the target 
response (i.e., Niño3.4) and 30 predictor variables (i.e., wind stress and 
temperature variables at a range of depths for each of the three regions). 
The data is partitioned into two subsets: training period 1960–93 and 
testing period 1994–2012, This temporal division is due to the improved 
data quality and coverage of ocean subsurface variables by Tropical 
Ocean-Global Atmosphere Program (TOGA) in 1994 (Petrova et al., 
2019). This is a retrospective experiment and the forecast skills have 
been assessed using both correlation and RMSE for a range of lead times 
up to 24 months. 

The dynamical linear model (DLM) is used for forecasting in this 

Fig. 7. Comparison of model performance using original and transformed predictors with the db8 wavelet filter: (a) DWT-based model; (b) MODWT-based model; (c) 
AT-based model. 
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Fig. 8. Flowchart of the stepwise variance transformation method.  

Table 3 
Illustration of variance transformation and stepwise variance transformation.   

Predictor Response Transformed Predictor 

Variance Transformation 
(VT) 

X1 Y X′

1 = g(X1,Y)
X2 Y X′

2 = g(X2,Y)
X3 Y X′

3 = g(X3,Y)

Stepwise Variance 
Transformation (SVT) 

X1 Y X′

1 = g(X1,Y)

X2|X
′

1  Y|X′

1  X′

2 = g(X2|X
′

1,Y|X
′

1)

X3|(X
′

1,

X′

2)

Y|(X′

1,

X′

2)

X′

3 = g(X3|(X
′

1,X
′

2),Y|
(X′

1,X
′

2))

Table 4 
Frequency of predictor selection and the number of predictors selected using Std, 
VT, and SVT approaches.  

Percentage of Samples Percentage of Samples Total Number of 
where Predictor xt− i is selected  Predictors Identified 

Predictor Std VT SVT Number of Predictors Std VT SVT 

1 100 100 100 1 0 0 0 
2 1 51 62 2 0 0 0 
3 2 31 6 3 92 1 32 
4 100 100 100 4 8 15 68 
5 2 84 0 5 0 45 0 
6 1 60 0 6 0 27 0 
7 2 10 0 7 0 10 0 
8 0 0 0 8 0 2 0 
9 100 100 100 9 0 0 0  
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study, and concurrent predictor variables are adopted as covariates in 
the model, and it can be written as (Petris, 2010): 

yt = Ftθt + vt, vt ∼ N(0,Vt),

θt = Gtθt− 1 + wt, wt ∼ N(0,Wt).
(11)  

where θt is the unobserved state vector while yt is the observed data that 
is the target response here. Ft , Gt , Vt , and Wt are real matrices of the 
appropriate dimension according to yt and θt . Equation (11) can also be 
cast into a component form, including trend, seasonal, and covariate (i. 
e., predictor variable) components. The DLM model can be easily 
defined within the framework of the dlm R package (Petris, 2010), and 
the time-invariant DLM with three components (i.e., trend, seasonal, 
and covariate components) was used as the predictive model here. The 
forecasting model used here is a general forecasting model, which is 
different from the model proposed by Petrova et al. (2019) specifically 
designed for Niño prediction based on the ENSO dynamics. However, 

the merit of models using transformed predictor variables will be 
demonstrated as long as the same baseline model is adopted. In addition, 
the transformed predictor variables are obtained using MODWT/AT- 
based variance transformation, and therefore no future information is 
required for forecasting. The Haar wavelet filter is used here so MODWT 
and AT are equivalent to each other. 

Significant predictor variables are identified using the original and 
transformed predictor variables, respectively. With these identified 
significant drivers, the target response Niño3.4 is predicted using the 
DLM model. Table 5 summarizes the predictor selection using Std, VT, 
and SVT approaches. Two common predictor variables have been 
identified as the significant variables by three approaches, and trans-
formed predictors associated with their original time series are given in 
Fig. 10. First, the two identified predictors, zonal wind stress and sub-
surface temperature, are transformed by filtering out irrelevant infor-
mation with both VT and SVT approaches. It is apparent that 
transformed predictor variables are smoother particularly for the pre-
dictor variable of zonal wind stress. Second, VT and SVT share the same 
first-order predictor variable, and the second predictor from the VT 
model was also selected as the second-order predictor in the SVT 
method. However, the second-order predictor by SVT is obtained from 
transformed residual information conditioned on the pre-existing pre-
dictor variable (i.e., the first-order predictor) thus it has a completely 
different range and variability compared to the predictor used in the VT 
and Std models. Transformed variables have same trend but with larger 
variance than untransformed variable, and VT transformed temperature 
variable has larger variance than SVT transformed variable. 

Fig. 9. Comparison of prediction accuracy between Std, VT, and SVT approaches.  

Table 5 
Identified significant predictor variables.  

No. Std VT SVT 

1 Region I subsurface 
temperature at 100 m 
depth 

Region I Zonal wind 
stress 

Region I Zonal wind 
stress 

2 Region I Zonal wind 
stress 

Region I subsurface 
temperature at 100 m 
depth 

Region I subsurface 
temperature at 100 m 
depth  
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Fig. 11 presents the predictive accuracy including both RMSE and 
correlation against lead time (l). Given the same predictor variables, the 
model using transformed predictor variables has better performance for 
both metrics. More importantly, the comparison between VT and SVT 
approach demonstrates the capability of the stepwise variance trans-
formation by transforming the predictor variable according to the re-
sidual in response conditioned on identified or pre-existing predictor 
variables. As a result, the SVT predictor variables can characterize the 

response better even with the same identified predictor variables. Better 
forecast skills than what Petrova et al. (2019) have shown are observed 
which is likely due to the concurrent predictor variables up to the cur-
rent time of t are used in this study instead of lagged predictor variables 
at times of t-1, t-2, …, and t-l adopted in their work. The objective of this 
study is to demonstrate the improvement in the predictability of Niño3.4 
by using transformed predictor variables given the same forecasting 
model, and this has been clearly shown in the example. Another 

Fig. 10. Transformed predictor variables and associated original time series: (a) the first-order predictor (b) the second-order predictor.  

Fig. 11. Forecast skills of three models by correlation and RMSE against varying lead time, respectively.  
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important feature of the proposed method is that the forecast skills 
deteriorate more slowly with increasing lead time than the reference 
model. This again shows the value of the variance transformation 
technique as it can preserve important features of the predictors across 
longer timescales. The stepwise approach shows consistent higher skills 
and slower deteriorations across lead times than the Std and VT 
approaches. 

6. Summary and conclusions 

In many natural systems particularly in the field of hydro- 
climatology, it is well acknowledged that long-term oscillations or 
low-frequency variabilities exist, and this forms the motivation for 
improving predictive capability using the proposed variance trans-
formation technique. Our proposed approach investigates the frequency 
domain wherein the original time series is transformed with a new 
variance structure across its spectrum with respect to a chosen response. 
The introduction of AT as the wavelet transformation alternative pro-
vides an additional choice of characterizing the spectral domain and 
provides advantages over other wavelet alternatives when a longer 
wavelet filter is required. This, especially, has an impact on the pre-
diction of instantaneous processes (e.g., floods, storms, and bushfires) in 
hydro-climatology, an important issue with wide implications for the 
discipline and the communities that are affected. Another contribution 
of the work is the proposed stepwise variance transformation frame-
work, which has advantages over the direct variance transformation 
approach in terms of both selection and prediction accuracy especially 
for complex natural systems where multiple predictor variables are 
needed. Applications to both synthetic and real examples demonstrate 
the merits of the wavelet-based transformation technique and the 
capability of stepwise variance transformation. 

There are unique aspects of the proposed variance transformation 
technique no matter which wavelet transform is used as the underlying 
basis. The first feature that must be noted is that the method identifies a 
unique variance transformation for each decomposed sub-time series, 
the transformation being shown to result in optimal predictive accuracy 
with respect to a chosen response. The second feature is that the pro-
posed method can identify additional meaningful drivers using the 
transformed predictor variables given the need for predictor selection 
(as is the case presented in our real example). The third feature is that 
the proposed method is a generic alternative potentially applicable in 
modelling any natural system. Theoretically, the DWT-based method 
leads to the best performance of proposed alternatives since it always 
fulfills the requirements of both additive and variance decomposition as 
long as orthogonal wavelets are used. However, the MODWT- and AT- 
based alternatives provide values in certain systems as shown in this 
study. Furthermore, these extensions have allowed applications in a 
forecasting setting, and the potential usage in long-lead time forecasts, 
such as the ENSO example given here, is very promising. Climate model 
simulations from decadal prediction experiments (Choudhury et al., 
2019) could be another scenario where these extensions can be applied 
for forecasting applications. More conventional downscaling (Mehrotra 
and Sharma, 2006) or conditional generation alternatives that use 
exogenous covariates (Roderick et al. 2019; Wasko and Sharma, 2017) 
generated using climate models, are also likely to be benefitted. While 
their performance largely depends on how well they can characterize 
the spectrum of variables of interest, it is preferable to use the DWT- 
based method when predictor variables can be simulated into the 
future. The emerging problem such as the assessment of climate change 
to the hydro-climatological system is a perfect example where climate 
model simulations are used to study impacts across affected various 
sectors (e.g., renewable resources, water resources, agriculture, etc.). 

In closing, it is worth noting that we have implemented the DWT-, 
MODWT-, and AT-based variance transformation and stepwise variance 
transformation in the R-package WASP (WAvelet System Prediction). 
WASP is an open-source tool with sufficient help-files and can be 

downloaded from the Web site at http://www.hydrology.unsw.edu.au/ 
software/WASP. A practical application of the software is given by 
Jiang, Rashid, et al. (2020). 
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