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Abstract Predicting future surpluses or shortages of water is a long‐standing problem having
considerable ramifications to water management across the world. Any prediction model for a natural
system such as one that estimates water surpluses or shortages requires a two‐step approach. These are the
following: first, identify and select meaningful predictor variables from a large number of potential
predictors and second, formulate an accurate, efficient, and robust predictive model between selected
predictors and the response. Recognizing that the timescales at which a response may operate is usually
different from that of the predictors being identified, we introduce here a wavelet‐based unique variance
transformation to each of the multiple predictor variables in the system which ensures an improved
regression relationship to themodeled response. All existingmethods assume no change in predictors even if
they characterize variability at markedly different timescales, a deficiency that is addressed using the
variance‐transformed predictor which can explain maximal information in an associated response. Using
this unique variance transformation, additional predictor variables can be selected by assessing their ability
to characterize residual information in the response that accounts for the effect of preidentified predictors.
We demonstrate the utility of the wavelet‐based method using synthetically generated data sets from known
linear and nonlinear systems with parametric and nonparametric predictive models. Applications to a
dynamic system and a real‐world example to downscale a drought indicator over the Sydney region confirm
its utility in an applied setting.

1. Introduction

The underlying theme of most regression modeling is that a system response can be characterized using a
finite set of predictor variables and a well‐defined model. When the response is a natural process as is the
case in hydrology, predictors need to be physically justified, with the model based on a strong conceptual
understanding of the system. However, for many systems it is difficult to specify the conceptual model, par-
ticularly where the response of interest is not directly observed and temporally varying, for example, when
considering the severity of drought in a catchment. In these cases, it is even more difficult to select the cor-
rect predictors. Prediction approaches range from simple regression models using a range of physically valid
predictor variables (Hertig & Tramblay, 2017) to those where complex transformations, including rotations
of the predictors, are used (Jiang et al., 2019; Ndehedehe et al., 2016; Vu et al., 2016). One problem is that
although predictors may be physically justifiable, they vary at scales that differ substantially from those of
the response. For example, daily precipitation is used to predict catchment streamflow, while the variability
at seasonal or interannual timescales is of most interest for water managers. This discrepancy in timescale
variability is amplified even further when considering groundwater systems.

Such differences in scale are difficult to accommodate in traditional regression modeling approaches. One
approach to address this problem is to transfer the modeling problem to the frequency domain.
Frequency domain techniques (using Fourier or Wavelet Transform) have been used to characterize and
simulate variability in the response (Brunner et al., 2019), to attribute processes that may be causing varia-
bility in a certain frequency band (Johnson et al., 2011), and to formulate bias‐correction alternatives for
multiple variables that exhibit systematic differences in characteristics compared to the observed record
(H. Nguyen et al., 2016, 2017, 2019). The current study aims to extend these approaches by developing a gen-
eric basis for regression modeling to characterize a response using a set of predictor variables that vary at
markedly different timescales from the response and each other.

Our proposed approach stems from the assumption that each predictor can be transformed to exhibit similar
spectral attributes as the response while ensuring that the predictability is maximized. This method
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essentially reconstructs a predictor by transforming the variance structure of the predictor across the entire
frequency domain. Specifically, we propose the following two hypotheses:

1. If the spectral variance structure of the predictor is similar to that of the response, the predictive model
using that predictor will exhibit better accuracy than otherwise.

2. If the spectral variance structure of the residual information contained within the predictor and response
variable conditioned to the preexisting predictor(s) is similar, the predictive model using that predictor
will exhibit better accuracy than otherwise.

Characterizing the spectrum of a time series or a signal is often done using the Fourier transform. Here we
adopt the wavelet transform (WT) instead due to the documented drawbacks of Fourier transform in losing
time information when transforming to the frequency domain (Daubechies, 1990; Strang & Nguyen, 1996;
Torrence & Compo, 1998). The WT is a powerful mathematical tool, which is able to decompose the original
time series into separate large‐scale (slowly changing, low frequency) and fine‐scale (rapidly changing
details, high frequency) subtime series. WT has been widely used in the field of hydrological and water
resources forecasting (Fahimi et al., 2017; J. Quilty et al., 2019; Rashid et al., 2018; Sang, 2013). Recently,
it has been shown that many forecasting applications using wavelets are incorrect (Du et al., 2017; John
Quilty & Adamowski, 2018) because the most commonly used discrete wavelet transform (DWT) requires
future information to forecast hydrological time series, limiting its use for real‐world applications since
the future is unknown. Because of this, our proposed approach focuses on models that predict systems retro-
spectively, for infilling gaps in the response variable record or for projecting derived hydrological variables
by using, for example, modeled future projections of the predictors but where the future of the derived
response is unknown. An example of the latter is presented in Rashid et al. (2018), in which a drought index
can be assessed using predictor variables from climatemodel projections of the future. More importantly, the
proposed method derived from the assumptions mentioned before is different from what has been currently
used so far. The two most commonly used approaches are (H. T. Nguyen & Nabney, 2010; John Quilty &
Adamowski, 2018) as follows: The first of these directly uses decomposed subtime series to predict the target
response (Kişi, 2011; Rashid et al., 2018), known as the direct approach. The second uses decomposed sub-
time series to forecast the decomposed frequency components of the associated response and then aggregates
the separate target series predictions (Rathinasamy et al., 2014; Shafaei & Kisi, 2016), the so‐called multi-
component approach. In contrast, our method performs a theoretically derived variance transformation to
each decomposed subtime series, the transformation being shown to result in optimal predictive accuracy
with respect to a chosen response.

The remainder of the paper is organized as follows. Section 2 reviews the DWT given the need for a good
understanding of the fundamentals of this method, introduces the variance transformation technique, and
describes the algorithm. In section 3, the utility of the wavelet‐based method outlined in section 2 is demon-
strated using synthetically generated data sets from known linear and nonlinear systems. Section 4 applies
the variance transformation technique to a dynamic data set followed by an application to a real‐world
example in section 5. Concluding remarks are given in section 6.

2. Background
2.1. DWT

As described previously, we adopt the DWT to characterize the spectrum. Background on relevant wavelet
theory is presented here. Consider a time series x(t) and assume that every vector in a vector space can be
written as a linear combination of properly formulated basis vectors. DWT involves transforming x(t) by
identifying such linear combinations. The synthesis, or the reconstruction to the transformed space followed
by the back‐transformation to the original space, corresponds to computing an optimal linear combination
equation (Halmos, 2017). This concept can be easily generalized to functions and the basis vectors in the
wavelet theory expressed as ψ(η)(Kaiser, 2010) follows:

ψ ηð Þ ¼ ψ τ; sð Þ ¼ 1ffiffi
s

p ψ
t− τ
s

� �
(1)

where τ is the translation and s is scale (equivalent to the inverse of the frequency associated with a Fourier
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transformation). The wavelets coefficients Wψ
x τ; sð Þ are calculated by the inner product of two functions

(Percival & Walden, 2000):

Wψ
x τ; sð Þ ¼ 1ffiffi

s
p ∫

∞

−∞
x tð Þ�ψ* t− τ

s

� �
dt (2)

where star (*) denotes complex conjugate functions of ψ(η). The wavelet coefficients measure the similarity
of x(t) to the wavelet ψ at the current scale s. With the basis functions and wavelet coefficients, the function
x(t) can be reconstructed by the summation of products of basis functions and associated wavelet coeffi-
cients. This inverse transform yields (Percival & Walden, 2000):

x tð Þ ¼ 1

C2
ψ
∫s∫τ Wψ

x τ; sð Þ 1
s2
ψ

t− τ
s

� �� �
dτ�ds (3)

where Cψ is a constant that depends on the specific wavelet ψ(η) used. This summarizes the rationale behind
the continuous wavelet transform. When applying this theory to a discrete data set case with the length of n
given by X = [x0, x1,…, xn − 1]

T, the DWT analyzes the signal at different scales with different translations
(often scales and translations are expressed in powers of two, so‐called dyadic scales and translations) by
decomposing the signal into wavelet and scaling coefficients. The process can be written in the form of
matrix multiplication (Percival & Walden, 2000):

W¼wX (4)

where W is a vector of DWT coefficients and w is the n × n orthonormal transform matrix (i.e.,

wTw=wwT= In, where In is the n × n identity matrix and wj;wk
� � ¼ 1; when j ¼ k

0; when j≠ k

	
). Due to this prop-

erty of orthonormality, it implies that wTW = wTwX = X. Thus, the reconstruction of the original data set
can be achieved by the synthesis equation (Aussem et al., 1998; Percival & Walden, 2000):

X¼wTW ¼ ∑
J

j¼1
wT

j Dj þ vTJ AJ (5)

where W is partitioned as W = [D1,…,DJ,AJ], including detail coefficients (Dj) and approximation
coefficient(s) (AJ); w can be partitioned into a similar structure as W, which is w = [w1,…,wJ, vJ]

T and
wj is n

2j × nmatrix related to scale sj = 2j − 1 and vJ is n
2J × nmatrix at scale 2J − 1. wj and vJ are also known

as wavelet and scaling filters, respectively. The synthesis equation leads to additive decomposition which is
known as multiresolution analysis (MRA). Mallat (1989) developed an efficient way to implement this
scheme using filters, which is widely used in signal processing (Strang & Nguyen, 1996). In the end, we
can simplify the synthesis equation into the following form

X ¼ ∑
J

j¼1
dj þ aJ (6)

where dj ¼ wT
j Dj is the reconstructed details, while aJ ¼ vT

J AJ is the reconstructed approximations.

Generally, aj and dj represent the large‐scale and fine‐scale information of the original signal at decomposi-
tion level jwith associated scale s = 2j − 1. In the matrix form, the reconstructed time series can be written as

X¼eRI (7)

where eR is the standardized reconstructions matrix R = [d1,…,dJ, aJ] (i.e., transforming the columns of the

reconstructions matrix to zero mean and unit standard deviation) and I ¼ σd1 ;…; σdJ ; σaJ½ �T

So far, the basis for DWT has been described. We now consider two additional important aspects before pro-
ceeding to our proposed variance transformation. First, boundary conditions (BC) represent the main source
of error in wavelet and scaling coefficients and reconstructions (Bakshi, 1999; Maheswaran & Khosa, 2012;
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John Quilty & Adamowski, 2018). This is the reason dyadic samples are used in synthetic experiments pre-
sented in the next section. Second, the selection of decomposition levels and wavelet family is closely
related to BC introduced errors. It is recommended that wide wavelet filters and high decomposition
levels be avoided when the sample size is limited (Percival & Walden, 2000; John Quilty &
Adamowski, 2018). In this study, Daubechies wavelets were used, which represents a family of orthogonal
wavelets and allows the time series to be decomposed and reconstructed perfectly by adding all the details
and approximations together. The summation of the variance of details and approximations also equals
the variance of the original time series (Burrus et al., 1998; Daubechies, 1992). Another important reason
why we chose the Daubechies family here is due to the flexibility of choosing different lengths of filters
among the same wavelet family, including db1 (Haar), db2, … , and db10 (Daubechies, 1992). The pro-
posed method here is a generic method potentially for any natural system modeling; thus, we also want
to include a wavelet family which can handle different types of physical processes with varying lengths.
In addition, this wavelet family has been well studied in the context of hydroclimatology (Maheswaran &
Khosa, 2012; Nalley et al., 2012; Rashid et al., 2018; Rathinasamy et al., 2014; Shafaei & Kisi, 2016). Their
results suggest that the Daubechies family has significant advantages over other wavelet families in the
field of hydroclimatology. The associated decomposition levels J were determined by the following equa-
tion (Kaiser, 2010):

J ¼ log n
2v− 1


 �
log 2ð Þ (8)

where v is the number of vanishing moments for a given wavelet (e.g., Daubechies 5, db5, has a 10‐point fil-
ter length with v equals to 5). This maximum decomposition level is the one where the number of data after
the last subsampling becomes smaller than the wavelet filter length (de Artigas et al., 2006), which allows us
to look at the complete frequency domain. A table of decomposition levels for all the data sets investigated in
the study is provided in Table S1 in the supporting information.

2.2. Variance Transformation in the Frequency Domain

As introduced previously, we are aiming to modify a predictor variable to exhibit similar spectral properties
as the response and DWT is adopted as a means to characterize the spectrum. The following variance trans-
formation technique was developed to verify our two hypotheses.

Assume that there are n paired centered (i.e., with mean of zero) observations of the predictor variable X and
the response variable Y, that is, (x0, y0),…,(xn − 1, yn − 1). First, DWT is applied to predictor X resulting in
wavelet and scaling coefficients W = [D1,…,DJ,AJ]. Reconstructed details and approximations using the
wavelet and scaling coefficients are denoted as R = [d1,…,dJ, aJ] with an associated standard deviation

matrix I ¼ σd1 ;…; σdJ ; σaJ½ �T . The rationale behind DWT ensures that the summation of the variance of

details and approximations also equals the variance of the original time series, whichmeans ∑
Jþ1

j¼1
I2j ¼

1
n− 1

XT

X ¼ σ2X. Therefore, X can be expressed as matrix multiplicationX¼eRIwith the standardized reconstructionseR¼ ed1;…; edJ;eaJh i
. The variance transformation is achieved by reconstructing a new predictor vector X′with

variance structure α aligned with the covariance matrix between the response and predictor reconstructions
in the frequency domain. They can be written as

X′¼eR α α ¼ σX eC (9)

where eC is the normalized covariance matrix (i.e., with unit norm) for the variable set (Y,eR) and the covar-
iance matrix C has the form of

C ¼ 1
n− 1

YT eR ¼ S
Yed1 ;…; SYedJ ; SYeaJ

h i
(10)

and α is the unique variance transformation matrix given a predictor variable and the corresponding
response. Essentially, the reconstructed predictor vector X′ is obtained by redistributing the variance in its
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spectrum while maintaining the total variance of the original predictor X. We cast the above variance trans-
formation process into the following form for ease of illustration in the following sections:

X′ ¼ g Xð Þ (11)

where g(�) denotes the variance transformation operation represented in equations (9) and (10). In a linear
system using simple linear regression, we can derive the theoretical optimal predictive accuracy of the target
response as measured by root‐mean‐square error (RMSE) as (the detailed derivation refers to Text S1 in the
supporting information)

RMSEmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n− 1
n

σ2Y− Ck k2
 �r
: (12)

In subsequent sections, we illustrate the method by first identifying the significant predictor variables. The
significant predictors are selected once they are reconstructed using the variance transformation method,
and the reconstructed predictors are then used for response prediction.

2.3. Description of the Algorithm

The wavelet‐based variance transformation algorithm adopted partial informational correlation (PIC) to
identify significant predictors. PIC is a distribution‐independent means of measuring dependence between
a given response and a predictor, conditioned to the preexisting predictor(s). A predictor is considered as sig-
nificant when the estimated PIC is highest among all the remaining candidate predictors, and the maximum
PIC is larger than an associated threshold PICp at a certain significance level p (we used p = 0.05 in this
study). Readers are referred to Sharma (2000) and Sharma andMehrotra (2014) for additional details, as well
as to Sharma et al. (2016) for the software needed to estimate the PIC. Given a set of candidate predictor vari-
ableX, an initially empty predictor vector Z, and a target response Y, the algorithm proceeds at each iteration
by finding the variance‐transformed candidate predictor variable X that maximizes PIC with respect to the
response Y, conditioned to the preexisting predictor(s) Z that have been selected. The details of the algorithm
are given below:

a Reconstruct a new set of predictors X′ by applying the variance transformation X|Zwith respect to Y|Z. X|
Z and Y|Z represent the residual information in the response Y and predictor variable X, when the effect
of the preexisting predictor(s) Z has been taken into account. We denote these as the partial response and
partial predictor variables when Z is not empty.

b Estimate the PIC between the response Y|Z and each new candidate predictor in X′. The predictor X* with
maximum PIC* is selected.

c If PIC* > PICp, include the significant predictor X
* in predictor vector Z and remove X* from X.

d Repeat Steps a–c, and the algorithm is terminated when PIC* is smaller than given threshold PICp or there
is no candidate predictor left in X.

An additional step is to estimate the RMSE of the response Y|Z using both original X|Z and
variance‐transformed X′ with a predefined predictive model. The estimated RMSE is used to compare the
models in the following sections. It should be noted that the partial response or partial predictor variables
above were ascertained using the k‐nearest neighbor (knn) regression in the leave‐one‐out
cross‐validation setting (in this study, k= 5was used), an efficient alternative that has been found to produce
stable outcomes in past applications (Friedman et al., 2001; Mehrotra & Sharma, 2006).

3. Application to Synthetic Data Sets With Known Attributes

The wavelet‐based method proposed in this paper was designed to integrate the utility of DWT with predic-
tor variable selection in the predicting response of interest. The aim of this section is to illustrate whether the
variance transformation technique can be used to improve predictive performance. To address this, we con-
sider a range of synthetic examples with known attributes, examining both linear and nonlinear relation-
ships between the response and associated predictors. These synthetic data sets were generated in a way
that mimics the features of real natural systems: linearity and/or nonlinearity in the underlying process, per-
sistence, and noise in response.
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A range of synthetic data sets was generated to evaluate the application of the wavelet‐based method. All
examples have the same sample size N = 512 and the total number of candidate predictors P = 9. The
amount of the noise in the response and predictors is defined as the standard deviation of the Gaussian,
while noise sɛ where ε~N(0,1), and s is the scaling factor used to alter the level of noise in the response
and predictors. Three examples are considered, including linear additive sinewave (SW) models with one
and three true predictors (denoting as SW1 and SW3, respectively) and a nonlinear hysteresis loop (HL)
model. Each of the examples is tested with varying levels of noise in the response and predictors, with three
levels of noise used: denoted as low, moderate, and high noise. Examples of variance structure in the spec-
trum before and after variance transformation for SW1_l and HL_l are given in Figure S1 in the supporting
information. The details of the model setup are given in the following sections.

We also investigate the sensitivity of our results to changes in sample sizeNwhen the noise levels vary in the
response and predictors. The performance of the models is evaluated on both calibration and validation data
sets, which is done by partitioning each sample of synthetically generated data set into two complementary
subsets. One subset is used as the calibration set, while the other subset is used as the validation set. It should
be noted that when applying this method to the situation that the response is unknown (in the validation
set), the covariance matrix in the equation (10) from the calibration set will be transferred to the validation
set along with the fitted predictive model.

3.1. SW Data Sets

SW models of varying frequencies were added together to generate synthetic data sets. The two groups of
data sets were generated by

xt ¼ sin 2πf itð Þ þ sεt

yt ¼ ∑
p

i¼1
sin 2πf itð Þ þ sεt

(13)

where f1,f2,…,fp are the frequencies of the sine wave and t ranges from 0 to 1. The response of two groups of
SW model data sets was generated from yt with

SW1:p ¼ 1; f ¼ 25 Hz

SW3:p ¼ 3; f ¼ 15; 25 and 30 Hz

The nine candidate predictors were generated from xt with varying frequencies from 3, 5, 10, 15, 25, 30, 55,
70, and 95 Hz, respectively, denoted as predictor variable X1, … , X9. Thus, the true predictor of the response
SW1 is predictor variable X5, while the true predictors of the response SW3 are predictor variables X4, X5,
and X6.

Results from synthetic data SW1 using simple linear regression as the predictive model are presented in
Table 1. The original predictors and reconstructed predictors with variance transformation are compared.
The estimated RMSE with the variance transformation operation always reaches the optimal prediction
accuracy with minimized RMSE given by equation (12). Predictor X5 leads to the lowest RMSE in the
response compared with other predictors, which is expected since X5 is the true predictor for SW1. When
the true predictor was identified and considered as the preexisting predictor, the RMSE of the partial
response still improved slightly with variance‐transformed partial predictor variables as shown in Table 1.

Table 2 presents the results of predictor selection in terms of the number of times a predictor is identified out
of 100 realizations and the total number of predictors identified using original‐ and variance‐transformed
predictors. According to the results of synthetic model SW1, it can be seen that true predictor X5 of SW1
is identified 100% of times using both original‐ and variance‐transformed predictors for all three noise levels.
However, additional predictor variables are often selected using the wavelet‐based method when consider-
ing the variable and the response as residual information. This is expected since the aim of the variance
transformation is to force the predictor to be similar to the spectrum of the partial response, resulting in
higher dependence. The advantage of the proposed approach is thus not evident for the simple SW1 model
and low noise levels. However, as shown in the following section when there are multiple predictors in a
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linear system and/or a nonlinear system, the variance transformation is more effective. The more complex
models are more representative of real natural systems.

The results from this application to synthetic model SW3 with three true predictors (X4, X5, and X6) and
higher noise levels (s = 1.0, 2.0, and 3.0) are given in Table 2 as well. The relatively high noise level intro-
duced in this linear system with multiple predictors is used to demonstrate the effectiveness of the variance
transformation technique. As the noise in the system increases, the correct predictors aremore often selected
by the wavelet‐based method than the original predictors. The wavelet‐based method is able to identify three
predictors in 93% (63%) of cases compared to 9% (1%) for the original predictors when data have moderate
(high) noise, highlighting the advantage of the proposed approach.

3.2. Hysteresis Loop Data Sets

Hysteresis is a common nonlinear phenomenon in natural systems, for example, storage‐discharge relation-
ships in rivers systems (Fovet et al., 2015). We adopt an analytical model to approximate a classical hysteresis
loop (Lapshin, 1995), and the synthetic data were generated by

xt ¼ 0:8cos 2πftð Þ þ sεt
yt ¼ 0:6cos 2πftð Þ3− 0:2sin 2πftð Þ5 þ sεt

: (14)

The response of HL model data sets was generated from yt with f = 25 Hz. The nine candidate predictors
were the same as the linear SW models. The true predictor of the HL response is predictor variable X5.

Results from synthetic model HL using knn regression as a predictive model are presented in Table 3 where
the original predictors and reconstructed predictors with variance transformation are compared. The esti-
mated RMSE with variance transformation is smaller than using original predictors in most cases except

Table 1
Comparison of Prediction Accuracy Using Both Original and Reconstructed New Predictor Sets Averaged Across 100
Realizations: SW Data Sets

SW1 Predictor

Response Partial response

Original Variance transformed Optimal Original Variance transformed Optimal

s = 0.1 1 0.713 0.703 0.703 0.147 0.146 0.146
2 0.713 0.708 0.708 0.147 0.147 0.147
3 0.713 0.712 0.712 0.147 0.146 0.146
4 0.713 0.713 0.713 0.147 0.146 0.146
5 0.140 0.116 0.116 — — —

6 0.713 0.712 0.712 0.147 0.146 0.146
7 0.713 0.703 0.703 0.147 0.146 0.146
8 0.713 0.703 0.703 0.147 0.146 0.146
9 0.713 0.711 0.711 0.147 0.146 0.146

s = 0.5 1 0.862 0.852 0.852 0.692 0.687 0.687
2 0.862 0.853 0.853 0.692 0.687 0.687
3 0.862 0.858 0.858 0.692 0.687 0.687
4 0.862 0.859 0.859 0.692 0.688 0.688
5 0.645 0.539 0.539 — — —

6 0.862 0.860 0.860 0.692 0.688 0.688
7 0.862 0.853 0.853 0.692 0.687 0.687
8 0.862 0.855 0.855 0.692 0.687 0.687
9 0.862 0.855 0.855 0.692 0.687 0.687

s = 1.0 1 1.229 1.219 1.219 1.265 1.256 1.256
2 1.229 1.218 1.218 1.264 1.256 1.256
3 1.229 1.220 1.220 1.265 1.256 1.256
4 1.229 1.221 1.221 1.265 1.256 1.256
5 1.157 1.051 1.051 — — —

6 1.229 1.222 1.222 1.265 1.256 1.256
7 1.229 1.218 1.218 1.265 1.255 1.255
8 1.229 1.217 1.217 1.264 1.254 1.254
9 1.229 1.219 1.219 1.265 1.255 1.255
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Table 2
Frequency of Predictor Selection and the Number of Predictors Selected Using Both Original and Reconstructed New
Predictor Sets: SW Data Sets

Model
Noise
level

Percentage of samples the predictor
selected

Percentage of samples total number of predictors
identified

Predictor Original
Variance
transformed

Number of
predictors Original

Variance
transformed

SW1 s = 0.1 1 0 0 1 100 93
2 0 2 2 0 6
3 0 2 3 0 1
4 0 1 4 0 0
5 100 100 5 0 0
6 0 3 6 0 0
7 0 0 7 0 0
8 0 0 8 0 0
9 0 0 9 0 0

s = 0.5 1 0 11 1 97 49
2 2 13 2 3 25
3 0 8 3 0 17
4 0 6 4 0 7
5 100 100 5 0 1
6 0 10 6 0 1
7 1 14 7 0 0
8 0 16 8 0 0
9 0 11 9 0 0

s = 1.0 1 0 19 1 96 32
2 0 17 2 3 27
3 0 16 3 1 26
4 1 10 4 0 7
5 100 100 5 0 7
6 1 12 6 0 1
7 2 12 7 0 0
8 1 25 8 0 0
9 0 22 9 0 0

SW3 s = 1.0 1 2 36 1 0 0
2 0 25 2 2 0
3 1 16 3 95 18
4 100 100 4 3 25
5 99 100 5 0 31
6 99 100 6 0 16
7 0 38 7 0 8
8 0 27 8 0 2
9 0 35 9 0 0

s = 2.0 1 0 22 1 29 1
2 0 22 2 4 4
3 1 25 3 1 25
4 15 99 4 0 20
5 9 96 5 0 26
6 13 93 6 0 16
7 1 25 7 0 6
8 0 34 8 0 2
9 1 32 9 0 0

s = 3.0 1 1 19 1 9 7
2 0 19 2 2 23
3 0 26 3 0 18
4 4 71 4 0 23
5 1 67 5 0 13
6 3 63 6 0 7
7 1 23 7 0 1
8 1 23 8 0 2
9 2 18 9 0 0
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for predictor variables X2 and X4 at low noise levels. Similarly, in Table 3 predictor variable X5 has the lowest
RMSE compared with other predictors as expected since predictor variable X5 is the true predictor for HL.
When the true predictor was identified and considered as the preexisting predictor, the RMSE of the
partial response still improved slightly with variance‐transformed partial predictor variables as shown in
Table 3.

Table 4 presents the results of predictor selection in terms of the number of times a predictor is identified out
of 100 realizations and the total number of predictor identified using original‐ and variance‐transformed pre-
dictors. It can be seen that true predictor X5 of HL is correctly identified 100% of cases using both original‐
and variance‐transformed predictors when the noise is low or moderate. But once there is high noise, the
performance of the original predictors sharply decreases (only 39% of cases), while the variance transforma-
tion continues to correctly identify the true predictor in all 100 cases. In summary, considering the results
from all the three examples, the advantage of identifying additional predictors using wavelet‐based method
is well demonstrated.

3.3. Sensitivity Analysis

The sensitivity of our results to changes in sample sizeN given different levels of noise in the system is shown
in Figures 1 and 2. Note that only the improved (i.e., reduced) RMSE of response from SW1 and HL is given
here, and the performance of their partial response is similar with slightly smaller improvements. These
results presented are also based on 100 realizations for different sample sizes and noise levels. As described
previously, the first half of independent samples is used for calibration and another half is used for validation
to ascertain the performance of variance transformation in predicting unknown response in the future.

For calibration results, RMSE is improved particularly when sample sizes are low and/or noise levels are
high when using variance‐transformed predictors. When sample sizes are small, the RMSE is relatively

Table 3
Comparison of Prediction Accuracy Using Both Original and Reconstructed New Predictor Sets Averaged Across 100
Realizations: HL Data Sets

Part
(a) Predictor

Response Partial response

Original Variance transformed Original Variance transformed

s = 0.1 1 0.402 0.393 0.202 0.200
2 0.338 0.396 0.203 0.201
3 0.402 0.399 0.203 0.202
4 0.394 0.397 0.203 0.201
5 0.185 0.169 — —

6 0.400 0.396 0.203 0.202
7 0.402 0.393 0.203 0.201
8 0.402 0.391 0.202 0.201
9 0.400 0.396 0.203 0.201

s = 0.5 1 0.670 0.665 0.677 0.672
2 0.671 0.663 0.676 0.673
3 0.672 0.666 0.677 0.671
4 0.671 0.668 0.676 0.672
5 0.617 0.582 — —

6 0.671 0.667 0.676 0.673
7 0.673 0.667 0.676 0.671
8 0.672 0.664 0.677 0.674
9 0.672 0.665 0.676 0.672

s = 1.0 1 1.163 1.152 1.262 1.250
2 1.159 1.152 1.260 1.253
3 1.162 1.154 1.260 1.251
4 1.160 1.154 1.257 1.248
5 1.149 1.116 — —

6 1.161 1.153 1.258 1.251
7 1.161 1.154 1.261 1.254
8 1.158 1.151 1.258 1.255
9 1.165 1.148 1.259 1.249
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large giving more scope for improvements with the proposed new method. For the calibration result of HL,
there are some exceptions in some cases of X2, X4, and X8 at low noise level, and it is expected since the
method is developed on the basis of linear regression for a linear system. The validation result of SW1
demonstrates that the usage of variance transformation trends to be more superior in terms of
predictability in almost all cases (Figure 1b). Figure 2b gives the validation result of HL, which shows
relatively less improvement, but it generally demonstrates the capability of the technique in a higher
noise system particularly. The largest improvements are seen for the predictor variable X5 for both
calibration and validation for all sample sizes since X5 is the true predictor for both SW1 and HL.

To sum up, in the linear system, the predictive accuracy can reach the theoretical optimal RMSE using the
variance‐transformed predictor set. In the nonlinear system, the variance transformation technique still
improves the prediction accuracy compared with the original data set in general. The application of the var-
iance transformation technique to a dynamic example given in the following section further demonstrates its
capability in a chaotic system.

4. Application to a Dynamic Example

A continuous dynamical system that exhibits chaotic dynamics was proposed by Rössler (1976) in 1976. The
Rössler system consists of a set of ordinary differential equations defined as follows:

_x ¼ − y− z _y ¼ x þ ay _z ¼ bþ z x− cð Þ (15)

where a, b, and c are parameters that specify the chaotic system. We investigate the system parameters with
parameters value a = 0.2, b = 0.2, and c = 5.7, which is known to produce a deterministic chaotic time series
(Strogatz, 2018; Harrington & Van Gorder, 2017). The time range is fixed from 0 to 50, and a total number of

Table 4
Frequency of Predictor Selection and the Number of Predictors Selected Using Both Original and Reconstructed New
Predictor Set: HL Data Sets

Percentage of samples the predictor selected Percentage of samples total number of predictors identified

Predictor Original Variance transformed Number of predictors Original Variance transformed

s = 0.1 1 0 7 1 100 82
2 0 3 2 0 17
3 0 1 3 0 1
4 0 2 4 0 0
5 100 100 5 0 0
6 0 0 6 0 0
7 0 4 7 0 0
8 0 2 8 0 0
9 0 0 9 0 0

s = 0.5 1 0 12 1 96 42
2 0 21 2 4 22
3 0 17 3 0 15
4 0 13 4 0 14
5 100 100 5 0 5
6 1 8 6 0 1
7 2 19 7 0 1
8 1 19 8 0 0
9 0 16 9 0 0

s = 1.0 1 0 24 1 40 32
2 0 26 2 1 23
3 0 18 3 0 20
4 1 13 4 0 13
5 39 100 5 0 8
6 1 6 6 0 3
7 0 24 7 0 0
8 0 18 8 0 1
9 1 27 9 0 0
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N = 100,000 paired observations (xt, yt, zt) was generated from an initial condition of (−2, −10, 0.2) with low
noise level (s = 0.1). The generated time series of x and y are used as predictors, while z is considered as the
response. The knn regression is used as the predictive model. The first half of the data is used for calibration,
while the second half of the data is used to verify the variance transformation technique. In Figure 3,
the observed and predicted z series with and without variance transformation are given in 3‐D view. The
wavelet‐based model performs substantially better than the model without variance transformation at the
calibration stage with errors one magnitude smaller than the model using original predictors (RMSE
equals 0.113 using variance‐transformed predictors, while RMSE is 1.189 using original predictors). In
terms of standard deviation, all three are similar while the proposed model has a marginally higher
correlation of 0.999 compared to 0.930. At the validation stage, both models predict small z values well
but have difficulties with large z values. The model using original predictors produces larger numbers of
high values, while the model using variance‐transformed predictors only captures several peaks of high
values. However, the overall prediction accuracy of the wavelet‐based model is improved, where RMSE is
about 2.550 against 4.493 using original predictors. In addition, the correlation of the model with and
without variance transformation is 0.56 and 0.36, respectively; the standard deviation between observed
response (σobs = 2.9) and predicted response using variance‐transformed predictors (σpred(vt) = 2.3) is
equivalent, while the predicted response using original predictors shows much higher standard deviation
(σpred = 4.5). All three metrics suggest the superiority of the proposed method.

Figure 1. Sensitivity analysis of the prediction accuracy of response, SW1, to changes in sample sizeN. The y axis gives the
reduced RMSE compared to the model using original predictor variable X, and the x axis indicates the individual predictor
variable. (a) Calibration. (b) Validation.
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Additional results of the proposed method to other linear, nonlinear, and dynamic systems are given in the
supporting information. These include a higher‐order autoregressivemodel (AR4) and a nonlinear threshold
autoregressive model (TAR), which were investigated previously by Cryer and Chan (2008), Galelli et al.
(2014), and Sharma and Mehrotra (2014). Duffing system (Dignowity et al., 2013; Duffing, 1918) is another
example of a dynamical system that exhibits chaotic behavior. In all synthetic experiments, our proposed
method exhibits superior accuracy than the reference model using nontransformed predictors in terms of
RMSE, correlation, and standard deviation. However, it should be noted that when predictors and the asso-
ciated response have similar spectral attributes as is the case in these additional experiments where the pre-
dictors are actually lagged values of the corresponding response, the improvement in predictability is small.

5. Application to a Real‐World Example

The wavelet‐based method is applied to downscale a selected drought index (Standardized Precipitation
Index, SPI12) over the Sydney region in Australia. We adapted the data set which has been presented in ear-
lier studies by Mehrotra and Sharma (2006, 2010) for downscaling and Mehrotra and Sharma (2015, 2016)
and Mehrotra et al. (2004) for bias correction. The data used here consist of seven atmospheric variables
as potential predictor variables to ground precipitation. These atmospheric variables are monthly time series
at 25 reanalysis grid points (2.5° × 2.5°) over Sydney, Australia, from 1950 to 2009, obtained from the
National Center for Environmental Prediction Reanalysis data provided by the NOAA/OAR/ESRL PSD,

Figure 2. Sensitivity analysis of the prediction accuracy of response, HL, to changes in sample size N. The y axis gives the
reduced RMSE compared to the model using original predictor variable X, and the x axis indicates the individual predictor
variable. (a) Calibration. (b) Validation.
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Boulder, Colorado, USA (https://www.esrl.noaa.gov/psd/). Nonstationarity and persistence are both present
in these atmospheric variables, making them a complex and challenging natural system to model. A 61‐yr
record (1949–2009) of monthly rainfall at 15 stations around Sydney is also obtained, and the observed
SPI12 is computed from the observed rainfall accordingly (Guttman, 1999). In addition, to demonstrate
the utility of the wavelet‐based method, cross validation is performed by partitioning a sample of
historical data into two complementary subsets. One subset is used as the calibration set, while the other
subset is used as the validation set followed by their order being reversed, leading to results presented and
discussed hereafter as cross‐validated results for the entire study period. This rationale for using cross
validation is that we can assess the model performance with independent data sets (Mehrotra & Sharma,
2006; H. Nguyen et al., 2019) hence indicative of performance under new conditions.

Figures 4 and 5 show the performance of the wavelet‐based model. It is clearly demonstrated that the
wavelet‐based method exhibits better prediction accuracy. First, in Figure 4, the tails of the probability dis-
tributions of predicted SPI12 with variance‐transformed predictors are considerably closer to observed SPI12
in most cases. This shows that the proposed approach is capable of capturing sustained dry/wet anomalies
well. Second, Figure 5a presents the comparison results using a Taylor Diagram (Taylor, 2001), which is typi-
cally used to summarize multiple aspects of model performance in a single plot. These metrics include the
standard deviation, centered RMSE, and correlation coefficient. It can be seen that the wavelet‐based model
consistently exhibits higher correlations, lower RMSE, and higher standard deviation. The higher standard
deviation is expected since the proposed approach can match sustained dry/wet anomalies better than other
alternatives. Lastly, the reduced RMSE of all the investigated rainfall stations relative to the nonwavelet
model is shown in Figure 5b. This result is especially pertinent given the expected changes in aridity into
the future (Zarch et al., 2015).

In terms of application in real‐world cases, there are some points worthy of notice. First, as we stated pre-
viously this approach is limited to the condition where the future is “known.” However, it can also be
applied in a forecasting framework using only past information to predict the future, where the

Figure 3. Comparison of observed and predicted z values with and without variance transformation (VT) of x and y. (a)
Calibration. (b) Validation.
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DWT‐MRA should be replaced by the Maximal Overlap DWT (MODWT) or à trous algorithm (AT).
MODWT and AT overcome the drawbacks of DWT‐MRA and allow use when the future is not known
(Nason, 2010; John Quilty & Adamowski, 2018). Second, although the variance transformation is
mathematically derived based on the linear regression model, the assumptions we proposed are not only
valid in a linear system but also can be applied to model nonlinear systems if a nonlinear or a
nonparametric model (knn, as implemented in this study) is used for the regression. This is demonstrated
by results from both synthetic and real data examples.

Additionally, other issues originating from the DWT should be noted: (1) The selection of the wavelet family,
for example, Daubechies family, vanishing moment (v) controls how well the fast‐changing predictor vari-
ables information is captured (e.g., as in daily precipitation) (Maheswaran & Khosa, 2012). (2) Due to the
requirement of a dyadic sample size in the DWT decomposition and reconstruction (Bakshi, 1999;
Torrence & Compo, 1998), there is a slight difference of total variance before and after DWT reconstruction,
which can lead to the subtle difference in the optimal RMSE and estimated RMSE in linear regression

Figure 4. Quantile plots of observed, predicted, and predicted with variance transformation SPI12.
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predictive system. (3) The selection of the decomposition level is related to the wavelet filter selected and
length of data available. For the most cases of using standard wavelet method lower decomposition levels
are preferred, but in terms of the proposed method in this study the decomposition level investigating the
complete frequency domain is recommended (systematic assessments on this are provided in Table S2
using synthetic experiments and Figures S2 and S3 using the same real‐world example with J = 2). (4) BC
introduced errors could be further addressed by using boundary corrected wavelet and scaling coefficients
using either MODWT or AT as proposed in the work of John Quilty and Adamowski (2018).

6. Conclusions

This paper has presented an information theoretic method to improve the predictive performance of a given
response in a natural system based on DWT. This method finds a unique variance transformation in the
entire frequency domain of a predictor that can explain maximal information of a given response. We have
assessed the utility of the wavelet‐based approach using synthetically generated data sets from known linear
and nonlinear systems. The two proposed hypotheses have been proven mathematically and using syn-
thetic examples, these being the following: (1) If variance structure of the predictor in the spectrum is
similar with the response, the predictive model exhibits improved accuracy (as measured by RMSE). (2)
If variance structure between residual information in predictor and response variable conditioned to
the preexisting predictor(s) is similar, the predictive model exhibits better accuracy. These assumptions
are not only valid in a linear system but also can be applied to modeling nonlinear systems. The results
have shown clear improvements in identifying meaningful predictors and improving the predictive per-
formance of the response compared to the use of untransformed predictors, especially in a system with
a high level of noise and nonlinearity. The application to the dynamic example demonstrates applying
the approach to model a natural system with remarkable different spectral attributes in variance distribu-
tion. It is suggested that this method is more effective in real‐world situations where the system is often
characterized with a higher level of noise and a nonlinear relationship between the response and predic-
tor variables. In conclusion, it has been confirmed that there exists a unique variance transformation in
the frequency domain representation of a predictor that can explain maximal information of a corre-
sponding response. Additional predictor variables can be selected using the wavelet‐based method by
expressing them and the response as residual information when the effect of preidentified predictor vari-
ables is considered.
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